Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction
نویسندگان
چکیده
The applicability of non-linear support vector machines (SVMs) has been limited in largescale data collections because of their linear prediction complexity to the size of support vectors. We propose an efficient prediction algorithm with performance guarantee for non-linear SVMs, termed AdaptSVM. It can selectively collapse the kernel function computation to a reduced set of support vectors, compensated by an additional correction term that can be easily computed on-line. It also allows adaptive fall-back to original kernel computation based on its estimated variance and maximum error tolerance. In addition to theoretical analysis, we empirically evaluate on multiple large-scale datasets to show that the proposed algorithm can speed up the prediction process up to 10 times with only < 0.5% accuracy loss.
منابع مشابه
Scaling up Kernel SVM on Limited Resources: A Low-rank Linearization Approach
Kernel Support Vector Machine delivers state-of-the-art results in non-linear classification, but the need to maintain a large number of support vectors poses a challenge in large scale training and testing. In contrast, linear SVM is much more scalable even on limited computing recourses (e.g. daily life PCs), but the learned model cannot capture non-linear concepts. To scale up kernel SVM on ...
متن کاملEfficient Kernel Approximation for Large-Scale Support Vector Machine Classification
Training support vector machines (SVMs) with nonlinear kernel functions on large-scale data are usually very timeconsuming. In contrast, there exist faster solvers to train the linear SVM. We propose a technique which sufficiently approximates the infinite-dimensional implicit feature mapping of the Gaussian kernel function by a low-dimensional feature mapping. By explicitly mapping data to the...
متن کاملComputationally Efficient Nyström Approximation using Fast Transforms
Our goal is to improve the training and prediction time of Nyström method, which is a widely-used technique for generating low-rank kernel matrix approximations. When applying the Nyström approximation for large-scale applications, both training and prediction time is dominated by computing kernel values between a data point and all landmark points. With m landmark points, this computation requ...
متن کاملUtilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework
Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...
متن کاملSVM and SVM Ensembles in Breast Cancer Prediction
Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011